人教版高考數(shù)學(xué)知識(shí)點(diǎn)整理
2.映射:設(shè)A和B是兩個(gè)非空集合,如果按照某種對應(yīng)關(guān)系f,對于集合A中的任意一個(gè)元素_,在集合B中都存在的一個(gè)元素y與之對應(yīng),那么,就稱對應(yīng)f:A→B為集合A到集合B的一個(gè)映射(mapping).映射是特殊的對應(yīng),簡稱“對一”的對應(yīng)。包括:一對一多對一
考點(diǎn)二、函數(shù)的概念
1.函數(shù):設(shè)A和B是兩個(gè)非空的數(shù)集,如果按照某種確定的對應(yīng)關(guān)系f,對于集合A中的任意一個(gè)數(shù)_,在集合B中都存在確定的數(shù)y與之對應(yīng),那么,就稱對應(yīng)f:A→B為集合A到集合B的一個(gè)函數(shù)。記作y=f(_),_A.其中_叫自變量,_的取值范圍A叫函數(shù)的定義域;與_的值相對應(yīng)的y的值函數(shù)值,函數(shù)值的集合叫做函數(shù)的值域。函數(shù)是特殊的映射,是非空數(shù)集A到非空數(shù)集B的映射。
2.函數(shù)的三要素:定義域、值域、對應(yīng)關(guān)系。這是判斷兩個(gè)函數(shù)是否為同一函數(shù)的依據(jù)。
3.區(qū)間的概念:設(shè)a,bR,且a
①(a,b)={_a
⑤(a,+∞)={__>a}⑥[a,+∞)={__≥a}⑦(-∞,b)={__
考點(diǎn)三、函數(shù)的表示方法
1.函數(shù)的三種表示方法列表法圖象法解析法
2.分段函數(shù):定義域的不同部分,有不同的對應(yīng)法則的函數(shù)。注意兩點(diǎn):①分段函數(shù)是一個(gè)函數(shù),不要誤認(rèn)為是幾個(gè)函數(shù)。②分段函數(shù)的定義域是各段定義域的并集,值域是各段值域的并集。
考點(diǎn)四、求定義域的幾種情況
①若f(_)是整式,則函數(shù)的定義域是實(shí)數(shù)集R;
②若f(_)是分式,則函數(shù)的定義域是使分母不等于0的實(shí)數(shù)集;
③若f(_)是二次根式,則函數(shù)的定義域是使根號內(nèi)的式子大于或等于0的實(shí)數(shù)集合;
④若f(_)是對數(shù)函數(shù),真數(shù)應(yīng)大于零。
⑤.因?yàn)榱愕牧愦蝺鐩]有意義,所以底數(shù)和指數(shù)不能同時(shí)為零。
⑥若f(_)是由幾個(gè)部分的數(shù)學(xué)式子構(gòu)成的,則函數(shù)的定義域是使各部分式子都有意義的實(shí)數(shù)集合;
⑦若f(_)是由實(shí)際問題抽象出來的函數(shù),則函數(shù)的定義域應(yīng)符合實(shí)際問題
高一數(shù)學(xué)知識(shí)點(diǎn)歸納大全
圓的方程定義:
圓的標(biāo)準(zhǔn)方程(_—a)2+(y—b)2=r2中,有三個(gè)參數(shù)a、b、r,即圓心坐標(biāo)為(a,b),只要求出a、b、r,這時(shí)圓的方程就被確定,因此確定圓方程,須三個(gè)獨(dú)立條件,其中圓心坐標(biāo)是圓的定位條件,半徑是圓的定形條件。
直線和圓的位置關(guān)系:
1、直線和圓位置關(guān)系的判定方法一是方程的觀點(diǎn),即把圓的方程和直線的方程聯(lián)立成方程組,利用判別式Δ來討論位置關(guān)系。
①Δ>0,直線和圓相交、②Δ=0,直線和圓相切、③Δ<0,直線和圓相離。
方法二是幾何的觀點(diǎn),即把圓心到直線的距離d和半徑R的大小加以比較。
①dR,直線和圓相離、
2、直線和圓相切,這類問題主要是求圓的切線方程、求圓的切線方程主要可分為已知斜率k或已知直線上一點(diǎn)兩種情況,而已知直線上一點(diǎn)又可分為已知圓上一點(diǎn)和圓外一點(diǎn)兩種情況。
3、直線和圓相交,這類問題主要是求弦長以及弦的中點(diǎn)問題。
切線的性質(zhì)
⑴圓心到切線的距離等于圓的半徑;
⑵過切點(diǎn)的半徑垂直于切線;
⑶經(jīng)過圓心,與切線垂直的直線必經(jīng)過切點(diǎn);
⑷經(jīng)過切點(diǎn),與切線垂直的直線必經(jīng)過圓心;
當(dāng)一條直線滿足
(1)過圓心;
(2)過切點(diǎn);
(3)垂直于切線三個(gè)性質(zhì)中的兩個(gè)時(shí),第三個(gè)性質(zhì)也滿足。
切線的判定定理
經(jīng)過半徑的外端點(diǎn)并且垂直于這條半徑的直線是圓的切線。
切線長定理
從圓外一點(diǎn)作圓的兩條切線,兩切線長相等,圓心與這一點(diǎn)的連線平分兩條切線的夾角。
高考數(shù)學(xué)知識(shí)點(diǎn)大全
第一節(jié) 大洲和大洋
一、海陸分布:
1.海陸面積比:七分海71%三分陸29%
2.海陸分布很不均勻:陸地主要集中在北半球,但是北極周圍卻是一片海洋;海洋大多分布在南半球,而南極周圍卻是一塊陸地。
3.無論怎樣平分地球,任何一半球都是海洋面積大于陸地面積。
二、七大洲和四大洋課本33頁圖
1.七大洲面積由大到?。簛喎潜蹦厦?,南極歐大洋;
2.四大洋:太平洋、大西洋、印度洋、北冰洋
4.面積廣大的陸地叫大陸最大的大陸是亞歐大陸,最小的大陸是澳大利亞大陸,面積較小的陸地叫島嶼面積最大的島嶼是格陵蘭島,陸地伸進(jìn)海洋的突出部分叫半島面積最大的半島是阿拉伯半島,許多島嶼合起來叫群島面積最大的群島是馬來群島。
6.亞歐兩洲的分界線:烏拉爾山、烏拉爾河、里海、大高加索山脈、黑海和土耳其海峽。課本33頁圖2.7
亞非兩洲的分界線:蘇伊士運(yùn)河。 南北美洲的分界線:巴拿馬運(yùn)河。
亞洲與北美洲的分界線:白令海峽。
7.七大洲的輪廓圖
8.面積最大的大洲是:亞洲,最小的大洲是:大洋洲
9.跨經(jīng)度最廣的大洲、緯度最高的大洲、最寒冷的大洲是:南極洲距南極洲最近的大洲:南美洲
10.主要位于東半球的大洲:亞洲、歐洲、非洲、大洋洲;全部位于西半球的大洲:北美洲、南美洲
11.完全位于北半球的大洲:歐洲、北美洲;完全位于南半球的大洲:南極洲
12.完全位于北半球的大洋:北冰洋;完全位于東半球的大洋:印度洋
13.赤道穿過的大洲:非洲,亞洲,大洋洲,南美洲
北回歸線穿過的大洲:非洲、亞洲、北美洲
南回歸線穿過的大洲:非洲、大洋洲、南美洲
北極圈穿過的大洲:歐洲、亞洲、北美洲
既被赤道穿過,又被北回歸線穿過的大洲:非洲、亞洲
14.環(huán)繞南極洲的大洋按逆時(shí)針方向依次是大西洋、太平洋、印度洋
15.環(huán)繞北冰洋的大洲按順時(shí)針方向有亞洲、歐洲、北美洲
16.各大洋瀕臨的大洲:課本33頁七大洲、四大洋圖
高考數(shù)學(xué)知識(shí)點(diǎn)-直線的傾斜角
定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°
高中數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)講解:直線的斜率
①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。在高中數(shù)學(xué)里直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。當(dāng)時(shí),。當(dāng)時(shí),;當(dāng)時(shí),不存在。
②過兩點(diǎn)的直線的斜率公式:
注意下面四點(diǎn):(1)當(dāng)時(shí),公式右邊無意義,直線的斜率不存在,傾斜角為90°;
(2)k與P1、P2的順序無關(guān);
(3)以后高中數(shù)學(xué)涉及到求斜率可不通過傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;
(4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。
高中數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)講解:直線方程
①點(diǎn)斜式:
直線斜率k,且過點(diǎn)
注意:高中數(shù)學(xué)在關(guān)于直線方程解法中,當(dāng)直線的斜率為0°時(shí),k=0,直線的方程是y=y1。當(dāng)直線的斜率為90°時(shí),直線的斜率不存在,它的方程不能用點(diǎn)斜式表示.但因l上每一點(diǎn)的橫坐標(biāo)都等于x1,所以它的方程是x=x1。
②斜截式:,直線斜率為k,直線在y軸上的截距為b
③兩點(diǎn)式:()直線兩點(diǎn),
④截矩式:
其中直線與軸交于點(diǎn),與軸交于點(diǎn),即與軸、軸的截距分別為。
⑤一般式:(A,B不全為0)
⑤一般式:(A,B不全為0)
注意:○1各式的適用范圍
○2特殊的方程如:平行于x軸的直線:
(b為常數(shù));平行于y軸的直線:
(a為常數(shù));